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Abstract
We present the design for a blockchain net-
work and minimum requirements for a gov-
erning agreement among a privileged subset of
the nodes’ operators to ensure that sensitive
and private data can be handled and securely
deleted on demand. The guiding design cri-
teria are based on an operational blockchain
application and include data minimization un-
der the constraint of providing fault toler-
ance, postquantum security, privacy of sensi-
tive data, a provision to delete all occurrences
of sensitive data, and the freedom to join as a
(non-privileged) node without any special pro-
visions or legal obligations.

1 Blockchain technologies
Distributed systems are subject to the CAP
theorem asserting that consistency, availabil-
ity, and partition-tolerance cannot all be simul-
taneously achieved. Although the CAP the-
orem was proven to be correct, [Gilbert and
Lynch, 2002] practical applications continue
to show ways that come close to simultane-
ously achieving these three desirable qualities.
Blockchain technologies do so in a probabilis-
tical fashion in that data validity is ultimately

never final. This way, partitions are avoided
(as they are temporary). Without (persisting)
partitions, the CAP theorem does not require
that a choice must be made between availabil-
ity and consistency.
Blockchain applications have reached a sig-

nificant audience with Bitcoin [Nakamoto,
2009], a cryptocurrency built on top of a dis-
tributed consensus algorithm using the hash-
cash [Back, 2002] proof-of-work algorithm as a
competition to determine an orderer. Unlike
other Byzantine fault tolerant consensus algo-
rithms, Bitcoin and other blockchain technolo-
gies can typically operate with an unknown
number of participants and in a trustless fash-
ion that is radically different from the thresh-
old fraction of honest nodes required by merely
Byzantine fault tolerant consensus algorithms.
Both the ability to operate with an unknown

number of nodes and being trustless are orig-
inally achieved by determining a temporary
orderer (or successful “miner”) by a proof-of-
work algorithm, ensuring the correctness of its
submissions (or the “mined block”) by vali-
dation in each node, and further validating
blocks by treating as valid only the nodes in the
longest path (the “blockchain”) from the root
in a tree of such blocks to the latest submission
in this path. There is hence no ultimate guar-
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antee of data finality (competing leaves can,
in theory, always grow to become the longest
blockchain) but only a (usually quickly increas-
ing) confidence in blocks as one path gets in-
creasingly longer and competing paths are in-
creasingly abandoned from being grown.
Blockchain technology not only enables

cryptocurrencies, in which integer quanti-
ties (of “coins” or “tokens” or a subdivision
thereof) is managed in a way that each such
quantity has an “owner” by whom it can ex-
clusively be redistributed, that its sum is some-
how constrained (e.g. to a total, growing but
limited supply of Bitcoins in the blockchain
technology of the same name), and these prop-
erties are automatically enforced by the under-
lying technology in a way that even conspiring
nodes cannot violate them unless they reach
a threshold of “mining power” (e.g. a major-
ity of proof-of-work power in Bitcoin called a
“51 percent attack”). It also enables a gener-
alization of this scheme known as smart con-
tract, [Szabo, 1997] a concept invented prior
to the realization in Bitcoin. Perhaps best-
known for its suitability for smart contracts is
the blockchain technology Ethereum. [Buterin,
2014]
There is a natural way to provide secu-

rity against quantum computers: Employ
postquantum cryptography. This may become
possible e.g. with a future but already dis-
cussed upgrade [Buterin, 2015] to Ethereum
allowing participants to choose the crypto-
graphic algorithms used for their data and
smart contracts.
Other developments include permissioned

blockchains which have a sense of identity be-
yond an “address” or hash of a public key
that any participant can choose simply by
generating a private key. One advantage
is that “private transactions” with restricted
data visibility can be implemented by encod-
ing data in away that only a given set of node
can decode it; an example for this capabil-

ity is Quorum [Nielsen et al., 2016] which ex-
tends Ethereum in this regard. Permissioned
blockchains can be based on existing identity
infrastructure involving certificate authorities
and hence can build on established standards
for addressing security concerns, e.g. by key
rotation upon key compromise or even in reg-
ular intervals. This provides a practical ad-
vantage for implementing requirements that a
certified identity shall be able to exercise cer-
tain powers not available to other participants.
This can include restricting the set of vali-
dating nodes to a known number and hence
enabling conventional consensus algorithms to
be employed; an example of such capability is
the Hyperledger blockchain [Jagadeesan et al.,
2017a,b].
One topic of this paper is a solution to a

perhaps neglected aspect of blockchain tech-
nology, compatibility with ideas of data protec-
tion. This may seem a contradiction in terms
as blockchain technology has historically re-
lied on public visibility and large-scale replica-
tion of data (“transactions”) yet data protec-
tion is centered around ideas of the minimal-
ization of data, the restriction of its visibility
to the point of maintaining a notion of owner-
ship, and ultimately the ability to control data
and data flow, including the feasibility of ver-
ifiable deletion of sensitive data. Indeed the
obvious approaches such as limiting transac-
tions with sensitive data to a small number of
permissioned nodes with which special legal ar-
rangements about the deletion of data is made
is a poor compromise: The limitation to few
nodes in itself loses an aspect of the security
behind blockchains—consider that a threshold-
reaching conspiracy requires fewer conspiring
nodes. The provision to delete transaction nec-
essarily loses an entire pillar, that of a provable
chain of (hash-linked) blocks, unless a provi-
sion is made to e.g. retain a cryptographic hash
of the deleted data.
Realizing data protection ideals is not just a
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virtue but has become a business requirement
for many applications. We argue that this jus-
tifies the creation of yet another blockchain
technology centered around its requirements.
This is, as explained in the preceding para-
graph, necessarily a compromise but we detail
a solution retaining key features of both data
protection and blockchain technology. To in-
clude provisions for deletion of data, this solu-
tion necessarily reaches beyond the realm of a
pure computer implementation: An algorithm
cannot prove that it has not retained an ex-
tra copy of a given data. Legal agreements
between parties operating such an algorithm
must be in place and can be supported by an al-
gorithm that makes it computationally at least
as cheap to actually forget (or, better yet, over-
write) some data than to retain it.
Beyond provisions for data protection, our

blockchain design features scalability to high
speed, high throughput, and low operating
cost. These are traditionally hard issues for
blockchains as their trustless nature usually
requires every node to verify every transac-
tion. That is a bottleneck for throughput and,
if the computational effort across every node
was priced (which it often is not), a cost fac-
tor. Worse yet, blockchain technologies tra-
ditionally built on proof-of-work schemes that
worsen the cost aspects, often by many orders
of magnitude.

2 Consistency, nodes’ power,
and private data

In any blockchain technology it is critical that
a node checks every single transaction in the
blockchain lest it mistakenly identifies an in-
valid path (involving blocks that were not
only ordered but augmented with some invalid
transaction) as the correct blockchain to fol-
low. Whilst such a situation, if affecting only
one or a few nodes, would heal itself, it is

problematic if it affects a majority of mining
power and thus perpetuates. It could be ar-
gued that non-mining nodes can operate in a
“light” manner where they do not verify the
validity of all transactions in the blockchain,
thereby relying on the assumption that the ma-
jority (by mining power) of miners do not fol-
low such an approach and hence relinquishing
the trustless nature of most blockchain tech-
nologies.
The security sacrifice associated with light

nodes would seem to limit the throughput and
the maximum data size in the blockchain of a
trustless blockchain technology to that feasible
on the least powerful non-light (or “full”) node.
This is not necessarily true: Instead of forming
a single blockchain, provisions for side chains
can be made. By subscribing only to a limited
number of side chains, less powerful nodes can
still ascertain the validity of chains relevant to
their transactions. Approaches to achieve bet-
ter scaling than traitional blockchain solutions
include using directed acyclic graphs (“tan-
gles”) instead of a single blockchain (e.g. in
Iota [Popov, 2017]) to achieve the required par-
tial ordering to decide an execution order be-
tween potentially conflicting transactions. Re-
cent developments in a similar direction in-
clude the multi-blockchain framework polka-
dot [Wood, 2017] and the novel consensus al-
gorithms Hashgraph [Baird, 2016] and Algo-
rand [Gilad et al., 2017, Chen and Micali, 2016,
Chen et al., 2018].
A problem without known solutions is the

limited verifiability of private data, see e.g. the
criticism in de Vilaca Burgos et al. [2017]. If
such private data is only visible to a limited set
of nodes, only these can calculate the outcome
of a transaction acting on it. This statement
is not self-explanatory because homomorphic
encryption might enable an exception. Ho-
momorphic encryption refers to cryptographic
systems that allow certain operations to be
performed on encrypted data without reveal-
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ing the data that is encrypted. However, a
simple argument shows that homomorphic en-
cryption cannot provide a key element to typi-
cal smart contracts which often need to assert
that an integer quantity is sufficiently large
(e.g. that a balance is sufficient to make a
payment). Enabling a party to make such de-
terminations as well as continuing to perform
a related subtraction (e.g. lower the balance
by the payment amount) would naturally en-
able said party to learn if the original value
is twice, thrice, etc., of the value it is com-
pared against (e.g. how large, approximately,
the balance is), thus undermining the desired
privacy. The only way forward with this idea
is to employ zero knowledge proofs of the exe-
cution of an entire smart contract, merely ver-
ifying the encrypted outcome of an algorithm
rather than conditions (like an encrypted num-
ber being larger than a threshold) and actions
(such as substracting from this number) sepa-
rately, but this is extremely resource intensive
despite recent progress in inventing schemes
that could one day be used in this fashion, e.g.
ZK-STARK [Ben-Sasson et al., 2018], bullet-
proofs [Bünz et al., 2017], and NIZKPoK [Katz
et al., 2018].

3 Public proofs involving pri-
vate data

We propose to solve the security issue of
private data (and private transactions) in a
blockchain technology by providing a way to
publicly prove the correctness of a transaction
involving private data without revealing the
private data. This proof is of a probabilis-
tic nature. It is faster and shorter than non-
interactive zero knowledge proofs (NIZKPs)
but sufficiently similar to replace them.
NIZKPs are best introduced by first consid-

ering an interactive zero knowledge proof to
prove knowledge of a function. Imagine an en-

tity wanting to demonstrate that it has learnt
to reverse a trap door (hash) function yet it is
unwilling to share the secret how this can be
achieved. We would trust it to have this abil-
ity if it can repeatedly demonstrate it for data
provably randomly generated, in particular, if
we interactively challenge it to reveal the trap
door function’s input data for output data we
supply. This is an interactive zero knowledge
proof. Any interactive zero knowledge proof
can be transformed into a non-interactive zero
knowledge proof by supplying a suitable algo-
rithm to generate the challenges from data that
the prover is unable to fully control (otherwise
the prover could effectively choose to avoid cer-
tain challenges that would reveal its inabil-
ity to achieve what it intends to prove being
able to perform). It must be pointed out that
there are reasons [Unruh, 2015, 2017] to ques-
tion that at least one such transform, the Fiat-
Shamir transform [Fiat and Shamir, 1986], de-
spite being based on hash functions and thus
suggesting postquantum security, does indeed
offer postquantum security in the general case.
Our proposal is not trustless. In fact, it re-

quires trust in two aspects that are partially
at odds with each other. One is that there is
a set of verifier nodes (or at least one verifer
node) that the executor of a transaction with
private data trusts to keep this data safe. The
other is that every node in the network trusts
that not all members of this set of nodes con-
spire. To recognize the potential for contradic-
tion, consider these requirements in a restated
form: The set of verifier nodes must be trusted
by the executor, to keep its private data secret
and to delete it upon demand, but then again
not be trusted to such an extent that all of
them might be suspected, by any other node,
of conspiring to forge data.
The first aspect of required trust, in han-

dling private data, is exercised by the execu-
tor of a transaction: It forwards private input
data (along with several sets of fake data that
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ideally should be indistinguishable from the
real data for the recipients) associated with the
smart contract to be executed to the set of ver-
ifier nodes. Input data shall be encompass any
parameter passed to a smart contract’s func-
tion, that function, the current state of (the
subset of accessed) data managed by the smart
contract (including one or more nonces to blind
its hashed value), and one or more nonces to
blind output data to be calculated. The set
of verifier nodes form a gossip network over
which this data is shared in encrypted form
and they independently calculate the resulting
output data. Then each of them issues an en-
dorsement indicating the nonce-blinded hashed
values of each input and output data. This en-
dorsement proof gets shared over a wider gos-
sip network that includes all nodes of the net-
work (or those subscribed to the corresponding
side-chain, to be discussed in section 9). If a
quorum is reached without a proof of the op-
posite (by revealing the unhashed input data)
by one of the verifier nodes being mined into
a block, the executor can reveal a proof of the
correctness of one of the hashed input data sets
by providing a path to a global (or side-chain
wide) Merkle root. This will be mined into an
ensuing block. The presence of both an unop-
posed quorum of endorsements and the Merkle
paths proving one of the input data sets as hav-
ing been present is our public proof about pri-
vate data which we call an endorsement proof.
The data flow is depicted in figure 1.
In case sufficiently many unoppossed en-

dorsement proofs have been mined into a block,
it is evident that this many nodes of the veri-
fier set have checked that the input and output
data revealed to them is indeed correctly pro-
cessed according to the smart contract. We de-
fine a quorum, to be explicitly given when spec-
ifying the set of verifier nodes, as the threshold
above which this shall suffice for all nodes to
trust that their information about it, blinded
hashes of the input and output data, is calcu-

lated correctly. To move forward, the executor
node then has a proof that a then specified
one among the input data sets corresponds to
the current state of the private data referenced.
This is possible by supplying a Merkle path
from a global Merkle root updated by every
node to the real input data set. Note that this
path may lead to more than one node (in which
case already all data in the input and output
data set consisted of more than a single hash).
Upon finding such a block mined (and the re-
quired quorum of verifier assertions in earlier
blocks), every node updates its global Merkle
root according to the blinded hash of the real
output data.
Conflicts may arise when two smart con-

tract invocations change data under the same
Merkle root. This is essentially always the
case when an intervening (and data changing)
smart contract is finalized whilst another smart
contract is in the first phase of this two-phase
(test data and signed invocation submission
and revelation of the input data’s existance)
because we propose using a single Merkle tree.
Hence, even if the smart contract invocations
can proceed in arbitrary order because they
do not write to the same data locations, the
Merkle path proving the input data’s pres-
ence for the second invocatin must be updated.
This updating is trivially possible for any node
observing new blocks in the blockchain because
the Merkle tree for the output data (which
must likewise be updated) together with the
original input data’s Merkle tree contain the
hashes (or contents) of every relevant node.
The actual updating is performed by each min-
ing node.
The reason we call this NIZKP-like construct

not just an endorsement but a (probabilistic)
endorsement proof relates to the idealization
that the verifier nodes behave memory-less and
to the example we gave for an interactive zero
knowledge proof. Within this idealization, we
probe at least one verifier node’s ability (and
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Executor
(node executing a
smart contract)

Knowledge group
(nodes stipulated
by the smart con-
tract or by the
executor, with
deletion obliga-
tion by contract)

Verifiers
(nodes stipulated
by the smart
contract or by
the executor,
memory-less by
contract)

Blockchain
(all nodes, for-
ever)

Test data set
(real and fake
input and output
data)

Verifier-signed
test data set Verifier-signed

test data set
(blinded hashes
only)

Quorum of
verifier-signed
test data set
(blinded hashes
only)

Merkle path as
proof of real in-
put data Merkle path as

proof of (hashes
of) real input
data; changes
Merkle root ac-
cording to hash
of real output
data

Replicated, re-
vealed output
data (backup
storage)

Figure 1: High-level communication.
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willingness) to accurately calculate the (hash
of the) output data of a transaction with given
input data. Given sufficiently many (s) suc-
cessfull executions we trust in it producing the
correct output also for the correct data. The
number s need not be nearly as large as for a
proof with a remaining probability of achiev-
ing it by luck on a cryptographically low level
if correct operation is incentivized (or incorrect
one penalized) in a way that spans more than
one endorsement proof.
This idealization requires enforcement be-

yond the world of computer code: A contrac-
tual agreement, including checks and appro-
priate penalties, to indeed run verifier nodes
in the prescribed, memory-less manner, may
be necessary. To partially alleviate this neces-
sity, we propose a computer code based mech-
anism, to be detailed later, to penalize veri-
fier nodes found to have produced even just
a single incorrect output data hash. Since
it it vitally important to the integrity of the
blockchain technology that this indeed never
occurs unchecked, we suggest that fault- and
glitch-tolerant programming should be em-
ployed, and errors could be penalized to a max-
imum effect such as simultaneous exclusion of
the offending node and forfeiture of coins or
tokens held by it.

4 High-Level Realization

The high-level outline of the preceeding section
leaves open the question how various proofs
can be implemented. We propose to orga-
nize storage into a Merkle-Tree where the two
branches at each level correspond to one bit
in a large address space composed of rather
large bitstrings that encode at least the set of
verifier nodes, the set of nodes authorized to
access data in a purely reading or also in a
writing fashion, along with an integer actually
describing an address into the address space

described by the rest of the bitstring.
Using a Merkle tree solves the problem of

proving the existence of a encrypted prior state
(of a sub-address space) if the root of the
overall Merkle tree is a consistent, distributed
property. This is achieved by using the old
and new Merkle root as the contents of each
block in the blockchain, along with the novel
proofs of each transaction and their old and
new Merkle paths as proof of inclusion.
Using endorsement proofs as well as Merkle

paths as proof of prior inclusion of data into the
current Merkle root, the communication (and
blockchain data inclusion) depicted in figure 1
becomes possible.

5 Hashes and Signatures

The security of our proposal obviously de-
pends, apart from the required trust and en-
forcement issues already detailed, on the se-
curity of the hashes, signatures, and encryp-
tion employed. As we only employ encryption
in transport, and envision to exclusively use
the ubiquitous standard TLS (transport layer
security) which we assume to acquire quan-
tum resistance encryption methods in the fu-
ture, we shall focus on hashes and signatures.
Hashes are typically postquantum safe because
the best attack against a quasirandom function
is Grover’s algorithm [Grover, 1996], lowering
the security level of a perfect hash function to
half its classical security level or, equivalently,
increasing the bit length requirement to twice
the requirement for resistance against merely
classically equipped attackers.
To maintain postquantum security in the

most obvious way, we opt for a hash based
scheme for signatures. Hash based signa-
ture schemes can provide essentially unlim-
ited signing capabilities yet such schemes
(e.g. SPHINCS [Bernstein et al., 2015] or
XMSS [Buchmann et al., 2011a] for which a
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merely informational internet engineering task
force’s request for comments, RFC 8391, ex-
ists) have overheads, are somewhat compli-
cated and, for a cryptographic scheme to be
deployed, still relatively novel.
To also be reasonably secure against imple-

mentation issues or yet to be discovered at-
tacks, we choose the simple and well-examined
Winternitz one-time signature (WOTS, see e.g.
Buchmann et al. [2011b]) scheme that offers a
simple compression of the basic Lamport sig-
nature scheme [Lamport, 1979] which could be
seen as an example of the most secure approach
to signing as secure signing in general is only
possible if and only if there is a secure hashing
scheme [Rompel, 1990]. Using a one-time sig-
nature scheme implies constant key rotation:
Each signature must include the publication of
a new public key and it must have provisions
to sign at least two messages (the key change
and a payload message).
We propose to allow a signer to sign arbi-

trarily many payload messages with a single
WOTS in order to allow many transactions
(from many nodes) to be processed by each ver-
ifier with a single key change. To enable this,
the signer actually signs a Merkle root over the
individual payloads. This allows the complete
signature that includes all payload messages to
be shortened to only the payload message(s) of
interest by keeping these, the root signature,
and a Merkle path to each retained payload
message.
It is critically important that signing twice

using the same private key is avoided: Not
only would such a double-signing using a one-
time signature scheme weaken its security but
tolerating it would allow a miner to simulta-
neously work on more than one fork of the
blockchain. This is a problem if mining is not
limited by computing power as it is in proof-
of-work schemes. The less computationally ex-
pensive alternative that also is less prone to
mining power concentration is proof-of-stake.

6 Proof-of-stake

Proof-of-stake schemes work by allocating min-
ing power according to the stake that a miner
has in the blockchain. Usually, using a cryp-
tocurrency implemented by the blockchain
technology, either the current balance or the
integral of balance over time is chosen where
the balance refers to the amount of cryptocur-
rency held by the miner’s account or address.
Proof-of-stake schemes are not the only alter-
native to proof-of-work schemes; in particu-
lar, the Byzantine consensus algorithm Algo-
rand [Chen and Micali, 2016, Gilad et al., 2017,
Chen et al., 2018] promises to deliver a compu-
tationally even cheaper alternative. Due to its
novelty and significant implementation effort,
subtlety, and resulting security uncertainty, we
consider it only for a future, improved version
of the blockchain technology presented here
which originally shall employ a proof-of-stake
scheme. The successful miner shall create a sig-
nature over the mined block, a proof of stake,
and its key change. This data is then propa-
gated via a gossip protocol.
Proof-of-stake schemes are not automati-

cally secure. The foremost problem lies in
the ability of miners to expend mining effort
on more than one branch of the blockchain.
There is an incentive for it as branches that
are behind have a nonzero probability of still
becoming the longest chain; if all nodes be-
have according to this incentive and mine on
multiple (or even all known) sidechains, the
usual and highly desirable assumption that this
nonzero probability is at least practically neg-
ligible no longer holds. Hence a mechanism
must be provided that at least discourages,
and ideally completely eliminates, such behav-
ior of mining on branches that should be aban-
donned. One such approach is to penalize min-
ing on more than one branch. This incidentally
corresponds to never using one-time-signatures
more than one time which would be required
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whenever a node wishes to increase the num-
ber of branches on which it mines. We propose
to introduce proofs of conviction with which
any node that becomes aware of another node’s
wrongdoing (such as reusing keys to issue more
than one one-time-signature using the same
key) can reliably report this wrongdoing to all
other nodes, allowing actions such as evicting
the convicted node from further participation.
We propose to allow a potential miner to

mine a block whenever the hash of the concate-
nation of its public address and an ever increas-
ing block number is smaller than its stake mea-
sured in a special kind of tokens to be discussed
later in section 11. This implies that, on aver-
age, there will be one minr per block number
but also that some block numbers will have no
or multiple miners. This can be handled by as-
signing a block height that is a function of this
hash value and the token balance of the miner;
for the following discussion, we assume that a
step function is chosen that is always 1 if the
miner is authorized to mine and 0 otherwise.
We call this function’s sum over all blocks of
a blockchain the height of a blockchain. One
might worry that this allows forks to be grown
retroactively: Blocks for which two or more
miners exist might have one of them mine their
block very late, creating a fork in a seemingly
established, already longer blockchain. How-
ever, in the typical case that this established
blockchain has a mined block for almost all (or
at leat more than half) of the ensuing block
numbers, it is impossible to grow the new fork
to the same height within the same range of
block numbers: The majority of potential min-
ers is already comitted to the new block and
would have to issue a second WOTS for the
same public key which, as discussed above, is
prohibited in an effective manner by proofs of
conviction. Hence an established blockchain
is secure against deep forks if it fulfills a cer-
tain condition. For the example block height
function, this condition is that the majority of

block numbers must be used in blocks; nodes
should monitor this ratio and refuse or delay
mining on forks where this is not given. Note
that the actual condition is a bit more com-
plicated: Not an absolute majority but a ma-
jority over all known forks is sufficient and it
is necessary to lower the bound according to
known forks to prevent mining from stalling in
the instance that many forks exist.

7 Proofs of conviction

There are two kinds of possible misbehaviors
that need to be revealed in a provable fashion
by proofs of conviction. One is the issuance
of false endorsement proofs. The other is the
reuse of a key for issuing a signature.
An incorrect endorsement proof can be re-

vealed by repeating it and revealing the rele-
vant set of input and output data that leads
to those hashes contained in it that do not re-
spond to the correct output data. The cor-
rect output data of the smart contract invo-
cation in question can then be calculated by
every node by executing the smart contract.
Game-theoretically, this behavior comes with
no risk to data privacy if an incorrect endorse-
ment is associated with a punitive event (be-
cause then verifier nodes are incentivized to
work correctly, ideally to the point of using
fault- and hence glitch-tolerant programming
techniques). This punitive action ideally in-
cludes exclusion from the network. The proof
of conviction described above should automat-
ically trigger the application of this punitive
effect by all honest nodes; for example, it could
trigger the immediate inclusion in a certificate
revocation list local to each node (and, even-
tually, also in a global one managed by the
certificate authority). We will clarify what we
mean by certificate and certificate authority in
the following section.
The other kind of conviction proof consists
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of two (maximally reduced) signatures using
the same public key. As verifying that the
same key is used reduces to calculating the
public key from each signature, no further in-
formation is required (the public address to
be excluded by inclusion in a certificate re-
vocation list is contained in each signature,
whose validity for the signed message must nat-
urally also be checked). The included message
can be maxiamally reduced by only including
the public address and the Merkle root of the
signed statements; details such as the signed
key change or other signed message compo-
nents are not required, should be pruned to
reduce the computational load on other nodes,
and must be pruned in order for the convic-
tion proof to be recognized as valid (any am-
biguity about this matter would create a com-
plicated situation where nodes effectively fol-
low different branches of an immediate fork
in node membership that could later develop
into a real blockchain fork; the followed branch
would then depend on what choice is imple-
mented in their software).

8 TLS, certificates and groups
of nodes

To ensure a transition path towards postquan-
tum transport security, without knowing of a
scheme we trust to certainly provide it in an
efficient and overall compelling way, we pro-
pose to use the standard transport layer secu-
rity (TLS) for communication between nodes:
We expect TLS to develop a future encryption
(and authentication) option offering postquan-
tum security overall. In case of privileged in-
formation, a node must first identify the node
to which we are connected without being succe-
sptible to a man-in-the-middle attack. This is
only possible using a certificate authority (CA)
system underlying this TLS communication.
In order for this system to operate as trust-

less as possible, we propose that every node
can become a CA to be trusted with regard to
certifying the identity of nodes allowed to re-
ceive sensitive data owned by this node. This
provides redundancy: In case there are multi-
ple owners of the same data, each can act as
the relevant CA (and each must be recognized
as such by other nodes).
We hence propose that any node authorized

to view private data can get a certificate from
the CA that owns this data where the certifi-
cate obtained identifies the authorized node by
an identifier we call its public address. This
public address is assigned upon generating the
first WOTS by a node and is the public key
corresponding to this one-time signature: It is
self-assigned but cannot be forged (without key
compromise). It persists in the transport en-
cryption side by the CA-issued certificate and
in the blockchain side by repetition in each sig-
nature (which is only accepted as valid if the
WOTS’ public key is identical to it or if its
signed statements include a previous signature
featuring the same public address).
Each CA shall also act as a resolver that

nodes subscribing to a side-chain with data
owned by the CA can use to join a gossip
protocol among other such nodes. This solves
the problem of peer discovery on a side-chain
in the following way. Initially, each poten-
tial CA persists into the mainchain its self-
signed certificate along with the internet proto-
col (IP) address where it can be reached; these
self-advertisements are repeated whenever the
IP address changes. A node wishing to sub-
scribe to this side-chain reads this certificate
and the corredponding IP address and initial-
ized a TLS connection to it, checking the cer-
tificate used and aborting if it does not corre-
spond to that found in the blockchain. If the
node is to take up a privileged role (i.e. become
a member of the knowledge group or a verifier
node), it also communicates a certificate sign-
ing request (CSR) to the CA. This communica-
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tion indirectly becomes part of the blockchain
because—to prove its public address and hence
identity—the requesting node must sign this
request with a WOTS and hence must include
a key rotation statement that must be included
into the blockchain.

9 Side chains and global ad-
dress space

The previous sections focused on the idea of
a single blockchain. This does not scale be-
cause even the weakest node will have to pro-
cess all transactions in order to maintain the
trustless nature of the blockchain. We now ex-
tent the notion of a single blockchain to orga-
nizing blocks into largely independent strands
of separate blockchains that we will refer to as
side-chains. In each side-chain we maintain dif-
ferent linked chains of key rotations such that
an actor has different public keys for each side-
chain.
Each smart contract has, associated with it,

a tree of subset blockchains we call side-chains.
This tree is incorporated into a global address
space where its root resides at a global ad-
dress given by the hash of the data of which
the smart contract consists (we envision that
even identical smart contracts will be able to
have unique hashes due to the ability of ap-
pending a nonce to the data representing the
code of which the smart contract consists). It
is a ternary tree. This is chosen for ready rep-
resentation as a Merkle-like tree where each
node has an associated hash value formed as
the hash of the ordered concatenation of its 0-
associated child node, a different Merkle root
(of its associated side-chain if present or no
data otherwise), and that of its 1-associated
child node. Below the Merkle root sits an ordi-
nary Merkle tree, giving rise to addresses that,
written in a ternary numeral system, only uses
the digits 0 and 1 except in exactly one place

where it has the digit 2 to mark the transition
between the Merkle-like and the true Merkle
tree spanned by the unified (global) address
space.
This organization allows giving Merkle (or

rather Merkle-like) paths as proof of data pres-
ence and hence allow applying endorsement
proofs in the same way as already discussed for
a single blockchain. It does, however, bring the
complication that a transaction might access
data of more than one side-chain. This can be
solved by allowing to act as verifiers only the
intersection of the sets of verifiers of each of
the side-chains involved. Sensible smart con-
tract design should chose the verifier sets and
especially their quorum conditions such as to
ensure that the resulting subsets reach a quo-
rum, ideally comfortably (i.e. with a sufficient
margin) to allow for fault-tolerance. The pro-
cess of making a multiple side-chains spanning
transaction is as follows. First the executor
node signs a suitable test data set with each of
the required signatures and key rotations, one
from every side-chain involved. Then the set of
verifier nodes calculate and sign the resulting
output data hashes. Finally, the executor node
publishes a revelation statement that finalizes
the transaction when mined.

10 Data storage and deletion

Having public proofs about private data, it is
possible to organize a blockchain where only
transaction executors and knowledge groups
can actively access private data (and sets of
verifier nodes become aware of it) yet ev-
ery node can verify that all transactions of a
blockchain were executed correctly. We solve
the problem that non-verifier nodes outside of
the knowledge group associated with private
data must eventually identify the identity of
private data used as input to smart contracts
and that present as output of an earlier, valid

11



smart contract execution by sharing a blinded
hash of the data with all nodes. The blinding
is performed by always prepending the data
with a randomly generated nonce of the same
bitsize as the hash. The hash is shared by in-
corporating it into the blockchain.
The members of a knowledge group commu-

nicate amongst each other the contents of a dis-
tributed key value store that we call a tempo-
rary unhasher. It resolves a hash to the nonce
and data used to create it or to the information
that this data has been deleted. The unhasher
is semi-immutable in that the stored data can
be overwritten once but only with an empty
value (i.e. a value having a length of zero bits)
that indicates deletion. The communication
to update the unhasher shall be performed in
a postquantum secure manner; we envision the
usage of TLS in the expectation that this stan-
dard will be amended to permit the (exclusive)
use of postquantum secure cryptography.
Each local unhasher operated by a node

can hence, for each address, be described
as a state machine with states “unknown,”
“known” (nonce and data), and “deleted.”
When encountering messages about a certain
state that are exchanged (transport encrypted
by TLS) between nodes of a knowledge group,
between the locally present state and the com-
municated state, the one that appears later in
the list of states wins out (see table 1).
To ensure compliance with local laws (such

as the EU’s GDPR or some countries’ require-
ment to store personal information of citizens
only inside their respective country), the nodes
forming the knowledge group and the set of
verifiers must be choosen accordingly. In par-
ticular, all verifier nodes must have commit-
ted (e.g. by contractual agreement) to not
store the unblinded fake and real data or their
hashes at all. The member nodes of knowl-
edge groups must have committed to a similar
agreement to honor the prescribed state ma-
chine in the sense that deleted data is indeed

State Message that triggers a transition
to this state

deleted deletion request (signed by anyone
with write access to the data)

known valid transaction (with endorse-
ment proof, revealed and blinded
input data as incorporated into the
blockchain), further accompanied
with unblinded output data for this
address

unknown none (initial state)

Table 1: Possible states of each address in a lo-
cal unhasher (key-value store), in order of de-
creasing priority. The state with highest prior-
ity wins if different nodes know different states.
Otherwise, state transition only occur as de-
scribed in the text.

approriately deleted and not maintained as a
copy, backup, or similar.

11 Naïve token example

It is trivial to implement a cryptocurrency
or token with full public visibility using our
scheme. Despite the fact that we call this a
naïve (or public) token, it fills an important
role: Balances to be used in the proof-of-stake
scheme must be public anyways, as must any
transfer thereof that is to be performed auto-
matically as a penalty by a convition proof. In
order to avoid the added complexity of defin-
ing a native token or cryptocurrency for this
purpose, we propose to standardize a token of
this public kind to serve that purpose.
Having such a privileged token, we propose

to also use it for a similar purpose as “gas” is
used in Ethereum, namely to incentivize nodes
to collaborate towards executing and mining
smart contract invocations. The realization is
necessarily slightly more complex in Ethereum
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Field Description

ID The byte 0016 indicating that
this message is a signature.

Address A hash-sized public address for
which this signature can sign.
For the first ever signature, this
is equal to the public key
associated with the WOTS
used; for all subsequent
signatures (that must involve a
key rotation) by the same node,
it must remain the same.

Statements A Merkle tree where each node
is given in one of three ways,
and should include the previous
signature (reduced to be over a
Merkle root):
1. The byte 0016 indicating that
the node’s two children follow.
2. The byte 0116 indicating that
a hash follows (a pruned
branch).
3. The byte 0216 indicating that
data (a nonce of hash-length
and a data structure) follows.

WOTS A Winternitz one time
signature using up to 28

repetitions of the hash function.

Table 2: Data structure “signature.”

Field Description

ID The byte 0116 indicating that
this message is a key change.

public key (A hash of) the public key for
the next WOTS.

Table 3: Data structure for statement “key
change.”

as we wish to come closer to rewarding all par-
ticipating nodes than by just setting aside an
amount of tokens for the miner. We propose to
address this by allowing the executor of a smart
contract invocation to include more than one
invocation, with at least some of them assign-
ing tokens to the set of verifier nodes and to a
pseudo-address from which the contract allows
the successful miner to transfer tokens towards
its balance.
The realization can exactly mirror what one

would do to implement e.g. a ERC20 or
ERC223 token in Ethereum: One creates a
smart contract using an address space that in-
cludes every node as a node of the knowledge
group and in which a hashmap or similar data
structure maps public address to an integer de-
noting the amount of tokens held by that ad-
dress. This smart contract must, at a min-
imum, define one function to transfer tokens
from the caller’s address to another address
given as a parameter.

12 Private token example
solving the real-time gross
settlement problem

Usually, one might be reluctant to reveal one’s
balance, certainly not on a per-transaction ba-
sis that, depending on the nature of the trans-
actions, might reveal very personal information
or allow linking the transaction to a personal
identity. If one adds to the usual finality of
cryptocurrency transfers a near-perfect bank
secrecy (which is imperfect only by allowing
a regulator to see the balances and transfers),
one arrives as what is known in the financial
world as the real-time gross settlement prob-
lem where the technical term real-time roughly
translates as faster than historical inter-bank
money transfers and guaranteed to be within
the same working day. An investigation into
the usefulness of permissioned blockchain tech-
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Field Description

ID The byte 0216 indicating that this message is a test data set.
Bit count An unsigned 32-bit integer indicating the number of bits in the ensuing prefix.

The length of the prefix as stored in the data structure is rounded up to the next
full byte.

Prefix The address prefix indicating the (ideally tightest) bound to which access by the
smart contract function to be executed is limited. Putting this data early in the
data structure allows the extraction of the knowledge group and the set of
verifier nodes even before the full data structure has been read or transmitted.

Address The address of the smart contract to be invoked.
Invokation A special address space that is filled with, in this order starting at address zero,

a hash of the invoked function’s name, the value of its first parameter, that of
the second parameter, etc. This is saved or transmitted in the same format as
each of the data sets, see there.

Set count A byte indicating the total number of input data sets (which should include the
real data set).

Data sets A concatenation of all data sets, each of which is a Merkle tree of the same
format as used in signatures, see table 2, with data given in non-hashed form if
and only if this data structure is used in communication with nodes in the
knowledge group or the set of verifier nodes. Otherwise, of the entire Merkle tree
only the root hash is included. In either case, only the actually referenced data is
included, yielding a different root hash than used for keeping track of the
blockchain’s overall status.

Table 4: Data structure “Test data set” (for phase 1 of the two-phase transaction commitment).

nology for this purpose under the additional
requirement to become fault-tolerant has been
performed by de Vilaca Burgos et al. [2017]
with the result that neither Hyperledger or
Quorum fully meets the requirement due to an
inability, at least in the chosen approach, to
prevent double spends in the event of a failure
of a single node operated by a financial regu-
lator.

We demonstrate by construction that our
proposed blockchain technology is able to solve
the real-time gross settlement problem. In
this example, as in the one cited, each bank
shall operate exactly one node and, unlike in
the cited example, multiple nodes are operated
by agencies trusted or contractually obliged to

keep the secrecy of transactions (e.g. a bank-
ing regulator, non government organizations,
a consortium organization jointly owned by all
participating banks, etc.). The initial setup
includes a smart contract with functions to be
detailed as they are called in this example.

Initially, all banks (and any one joining in
the future) starts out with a zero balance. This
is realized in the smart contract by keeping a
balance in an address space to which only the
individual bank is in the knowledge group and
treating missing data (in state “unknown”) as
zero. Alternatively, any other initial token dis-
tribution can be trivially implemented, for ex-
ample to mirror the individual banks’ poses-
sions at the day of inception of the smart con-
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Field Description

ID A byte equal to 0316
identifying this as a
block to be incorporated
into the blockchain.

Prior The hash of the previous
block.

Authorization
Content signatures Concatenated signatures

(of statements with ID
type 4 and 5) that form
this block which is valid
if and only if it is validly
signed, the prior refers
to a valid block, the
authorization is valid,
every signature is valid,
every content signature
is maximally reduced to
exactly one statement of
ID type 4 or 5, and
every such signature is
relevant in the sense
that the blockchain’s
status would be different
if it was not present.

Table 5: Data structure of the statement
“block found.”

Field Description

ID A byte equal to 0416 identifying this
as an endorsement proof.

(Rest) The same data structure as
contained in the statement “Test
data set,” see table 4.

Table 6: Data structure of the statement “en-
dorsement proof.”

Field Description

ID A byte equal to 0516
identifying this as an
executor’s revelation.

Remainder 1 The same data structure as
contained in the statement
“Test data set,” see table 4,
except that the field “set
count” must be one and the
Merkle tree given as “data
set” here containing the full
data corresponding to the
prefix-identified side-chain’s
current state. The Merkle root
will hence be already known
to other nodes.

Remainder 2 The analogous Merkle path
not for the input but for the
output data, again in the
context of the global Merkle
root.

Table 7: Data structure of the statement “ex-
ecutor’s revelation.” Note that in general, it
will be signed by a miner and not by the ex-
ecutor because the miner may need to update
the Merkle path according to changes made by
transactions revealed earlier.

Field Description

ID A byte equal to 0616 identifying this
as a smart contract (and side-chain)
genesis.

Table 8: Data structure of the statement “gen-
esis.”
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Field Description

ID A byte equal to 0716 identifying
this as a CA certificate.

size An unsigned 32-bit integer equal
to the number of bytes in the
ensuing certificate.

certificate The certificate data, as
standardized by TLS.

Table 9: Data structure of the statement “CA
certificate.”

Field Description

ID A byte equal to 0816 identifying this
as a CSR.

size An unsigned 32-bit integer equal to
the number of bytes in the ensuing
CSR.

CSR The certificate signing request’s data,
as standardized by TLS.

Table 10: Data structure of the statement
“Certificate signing request.”

tract. In the following, it is assumed that at
least one participant has been initialized with
a non-zero balance; if this is not the case, a
function (that shall not be detailed further) of
the smart contract must be implemented to ar-
range to supply banks with tokens. Balances
will be implemented as unsigned integers and
hence can never become negative.
A bank wishing to initiate a transfer of some

of its tokens to another bank shall call a func-
tion of the smart contract that accesses, after
checking for sufficient balance, another knowl-
edge group formed of the two banks involved
in the transaction. The set of verifier nodes
can be formed from a subset of the trusted
agencies augmented by the two banks them-
selves; the smart contract function shall, as all
smart contract functions, check that the veri-

fier set includes sufficiently many of the trusted
agencies. In detail, the initiating bank signs a
transaction that includes the called function
and a dataset containing, among decoys/fakes,
the blinded hashes of the real input and output
data. The output data, in this private address
space shared between the two banks, shall re-
semble a check: It contains the amount to be
transferred, the benefiary node (of the recipi-
ent bank), and a signature of the sending node
(of the originator bank).

Cashing this check is done by the recipi-
ent node by calling another function of the
smart contract. This function first asserts that
the check is appropriately signed and lists the
caller as beneficiary node. If this is the case, it
increases the caller’s private balance (in its pri-
vate address space) accordingly (with checking
for overflows optional if it is otherwise guaran-
teed that the total token supply cannot cause
an overflow).

This scheme affords near-maximum privacy:
The existence and originator of a transaction
is shared between banks and otherwise only
with watchdog nodes that have entered a le-
gal agreement about implementing their nodes
without memory of such information. It has
the potential to offer hyper-realtime settlement
and is as secure as the unwillingness of all in-
volved actors (at least one bank and the mini-
mum set of verifiers the smart contract acceots)
to all collude at the risk that a single whistle-
blower among them can have colluders banned
from further participating in this system (plus
the further penalty of loosing all public to-
kens). Unfortunately, we are unaware of a way
to design a system that generalizes the loss of
public tokens to the loss of the private tokens
that are normally used in this example.
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13 Conclusion

Given the lack of existing solutions to satisfy
the requirements experienced in a real, com-
mercially productive blockchain application,
Lition has designed a proprietary blockchain
solution. This new blockchain to solve these
shortcomings has been described in this doc-
ument. Lition has presented the design for
a blockchain network and minimum require-
ments for a governing agreement among a priv-
ileged subset of the nodes’ operators to ensure
that sensitive and private data can be handled
and securely deleted on demand and even con-
nected to smart contracts for deletion. The
guiding design criteria of postquantum secu-
rity for data integrity, data minimization un-
der the constraint of providing fault tolerance,
privacy of sensitive data, a provision to delete
all occurrences of sensitive data, and the free-
dom to join as a (non-privileged) node without
any special provisions or legal obligations have
been described, along with the novel approach
to solve the security issue of private data (and
private transactions) in a blockchain technol-
ogy by providing a technique to publicly prove
the correctness of a transaction involving pri-
vate data without revealing the private data.
This proof is not fully trustless but is of a prob-
abilistic nature and similar to non-interactive
zero knowledge proofs (NIZKPs).
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A Blockchain Compactifica-
tion

It may be possible to reduce the size of the
blockchain history by storing most aspects of
the endorsement proofs, the repeated verifier
signatures, in a different location that does not
need to be kept for the entire history: A single
verifier signature is sufficient to reconstruct the
history of (hashed and blinded) private data,
provided that the identity of every such ver-
ifier signature and the absence of a proof of
conviction is also saved with the blockchain
history. We estimate that this will reduce the
storage requirement for a node wishing to keep
a full history by more than an order of mag-
nitude (consider, for example, that every data
set is typically accompanied by two decoy data
sets and a quorum of five verifier nodes is typ-
ically stipulated which translates into three
times five data sets in the complete endorse-
ment proof of which only one would need to be
kept in the blockchain history for completed
transactions).
This scheme can be taken to the extreme:

It already implies that such a node can only
recostruct the history of the blockchain net-
work’s state but no longer prove it to other
nodes. For the same result, it would be suf-
ficient to merely record every smart contract
execution’s outcome. In particular, by keep-
ing the executor’s signature and one verifier’s
signature, it can still be proven that the state
is not forged to assume an arbitrary state (al-
though it is no longer possible to prove that
individual transactions did or did not succeed
in changing the state).
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